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Abstract
Krall’s polynomials are orthogonal polynomials that are also eigenfunctions
of a differential operator. We exhibit an analogue of Krall’s polynomials
within the context of rank-one commutative rings of difference operators.
The corresponding spectral curves are unicursal curves with equations v2 =
u2R+1(u + 1)2S+1, R = 0, 1, 2, . . . , S = 0, 1, 2, . . . . Our analogues of
Krall’s polynomials are rational functions, which satisfy an orthogonality
relation on the circle. The proof of the orthogonality relations combines the
discrete Kadomtsev–Petviashvili bilinear identities, the cuspidal character of
the singularities of the spectral curves, together with an extra symmetry of the
problem.

PACS number: 0230G

1. Introduction

In 1938, Krall [11] posed the problem to determine all families of orthogonal polynomials
which are eigenfunctions of a differential operator of an arbitrary order. Already in 1929,
Bochner [1] had proved that, when the operator is of order two, the only solutions are provided
by the classical orthogonal polynomials: the Hermite, the Laguerre, the Jacobi and the lesser
known Bessel polynomials. In general, Krall showed that the operator has to be of even order,
and in [12] he solved the problem completely in the case of an operator of order four. In the
last few years, there has been a renewal of interest in Krall’s problem, see [3–5, 9, 10, 17].

A version of Krall’s problem, purely within the context of differential operators, was
proposed some time ago by Duistermaat and Grünbaum [2]. This work is now widely known
under the name of ‘the bispectral problem’. In [16], Wilson proposed to classify bispectral
commutative rings of differential operators and he was able to solve the problem completely in
the case of rank one. We remind the reader that, by definition, the rank is the greatest common
divisor of the orders of all the operators in the ring. In [7], we started a study of bispectral
commutative rings of difference operators, for which there is a family of eigenfunctions that
are also eigenfunctions of a differential operator in the spectral variable. This work led us
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to conjecture an analogue of Wilson’s result [16]. Namely, a rank-one commutative ring of
difference operators is bispectral if and only if the spectrum of this ring (in the sense of algebraic
geometry) is a unicursal curve that compactifies by adding two non-singular points at infinity
(instead of one non-singular point in the purely differential version of the problem). The ‘if’
part of the conjecture is proved in [7]. Paraphrasing Wilson [16, p 188], the ‘only if’ part of
the conjecture is ‘very plausible’, but the proof is ‘quite troublesome’, and it still needs to be
worked out in detail, see remark 2.3.

Motivated by Krall’s problem, the aim of this paper is to construct explicitly all maximal
rank-one commutative rings of difference operators whose spectrum is a unicursal curve, and
which contain a tridiagonal matrix with one diagonal above and one diagonal below the main
diagonal. An easy argument shows that these rings must necessarily correspond to the class
of unicursal curves with equations

v2 = u2R+1(u + 1)2S+1 R = 0, 1, 2, . . . S = 0, 1, 2, . . . . (1.1)

This result is established in proposition 2.4. Then, we show that the tridiagonal matrices that
are contained in these rings can be obtained explicitly by performing a sequence of Darboux
transformations from the discrete second-derivative operator

L0fn = fn+1 − 2fn + fn−1

adding bound states at two different points, with multiplicityR and S, respectively. The precise
statement is given in theorem 4.2.

When introducing a rational parameter x with x = 0 and ∞ corresponding to the two
points at infinity of the curves in (1.1), a suitably normalized common eigenfunction pn(x)

to the operators in the rings above, provides a family of rational functions of x with poles at
0,∞ and the two cusps x = ±1. These rational functions satisfy an orthogonality relation
on any simple closed curve encircling the origin and avoiding ±1, thus providing a rational
analogue of Krall’s orthogonal polynomials. The proof of the orthogonality relations depends
on relating the Darboux process with the notion of the wave and adjoint wave operators of the
discrete Kadomtsev–Petviashvili (KP) hierarchy, as well as exploiting the cuspidal character
of the singular points of the curves (1.1). These results form the content of theorems 3.3 and
5.2, while section 2 reviews the necessary background material.

The solutions described in this paper are reminiscent of the rank-one solutions of the purely
continuous version of the bispectral problem, as formulated in [2]. There, all rank-one solutions
are obtained by iteration of the Darboux transformation starting from d2/dx2. The spectrum
of the corresponding rings are unicursal curves with equations v2 = u2R+1, R = 0, 1, 2, . . . .
A proof of the ‘only if’ part of the conjecture formulated at the beginning of the introduction,
would show that we have found all bispectral rank-one commutative rings of difference
operators that contain a tridiagonal matrix.

In a recent work [14], Nijhoff and Chalykh have conjectured a purely difference analogue
of Wilson’s result [16] and established it in a generic situation. It would be interesting to
understand how the solutions obtained in the present paper relate to their approach, by some
limiting procedure.

2. The ∆KP hierarchy and the adelic flag manifold

We start by recalling a few basic facts concerning the discrete KP (�KP) hierarchy and the
adelic flag manifold, that will play a crucial role in the rest of our paper. The proofs can all be
found in our previous work [7] and the pioneering paper [16].
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The discrete KP hierarchy is the family of evolution equations in infinitely many time
variables t = (t1, t2, t3, . . .)

∂L

∂ti
= [(Li)+, L] (2.1)

for L a general first-order formal pseudo-difference operator

L = � +
∞∑
j=0

aj (n)�
−j = � + (a0(n) − 1)I +

∞∑
j=1

bj (n)�
−j

with (Li)+ the positive difference part ofLi . Here� and� denote, respectively, the customary
shift and difference operators acting on the ring R of functions of a discrete variable n ∈ Z by

�f (n) = f (n + 1) and �f (n) = f (n + 1) − f (n) = (� − I )f (n)

where I is the identity matrix. In the following, we denote byX∗ the adjoint (i.e. the transpose,
if we think in terms of matrices) of a formal pseudo-difference operator X.

A Sato-type theory for this hierarchy was developed in [7] (see also [8]), by conjugating
L to the difference operator �, that is L = W�W−1, with

W(n; t) = 1 +
∞∑
j=1

wj(n; t)�−j

the so-called wave operator. The wavefunction w(n; t, z) and the adjoint wavefunction
w∗(n; t, z) are, respectively, defined by

w(n; t, z) = W(n; t)Exp(n; t, z) (2.2)

w∗(n; t, z) = (W−1(n − 1; t))∗ Exp−1(n; t, z) (2.3)

where Exp(n; t, z) denotes the exponential function

Exp(n; t, z) = (1 + z)n exp

( ∞∑
i=1

tiz
i

)
. (2.4)

A key ingredient of the theory are the so-called bilinear identities.

∆KP bilinear identities (see proposition 2.1 in [7]).

resz=∞ w(n; t, z)w∗(m; t ′, z) dz = 0 ∀n � m and ∀t, t ′. (2.5)

These identities imply the existence of a tau function τ(n; t), such that

w(n; t, z) = τ(n; t − [z−1])

τ (n; t) Exp(n; t, z) (2.6)

and

w∗(n; t, z) = τ(n; t + [z−1])

τ (n; t) Exp−1(n; t, z) (2.7)

where [z] = (z, z2/2, z3/3, . . .).
We denote by e(r, λ) the linear functional acting on a function g(z) by the formula

〈e(r, λ), g〉 = g(r)(λ) λ ∈ C r � 0. (2.8)
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Following [16], a linear functional of the type c = ∑
r, finite αre(r, λ), will be called a one-point

condition since, when applied to a function g, it involves the values of this function and its
derivatives at only one point λ ∈ C.

We shall denote by Wr� the discrete Wronskian with respect to the variable n, also known
as a Casorati determinant:

Wr�
(
φ1(n), φ2(n), . . . , φK(n)

) = det
(
�i−1φj (n)

)
1�i,j�K

. (2.9)

Definition 2.1. Given a family of one-point conditions cj , 1 � j � K , at the (not necessarily
distinct) points λ1, . . . , λK , we call

τ(n; t) = Wr�(φ1(n; t), . . . , φK(n; t)) exp

(
−

∞∑
i=1

ti

K∑
j=1

λij

) K∏
j=1

(1 + λj )
−n (2.10)

with

φj (n; t) = 〈cj ,Exp(n; t, z)〉
an adelic tau function of the �KP hierarchy.

The purpose of the exponential factor in (2.10) is to cancel the exponential factor that
comes out automatically from the Wronskian determinant. With this normalization, the tau
function τ(n; t) becomes a (quasi-)polynomial in all variables, n and {tj }. The tau function
τ(n; t) can be viewed as an infinite sequence (indexed by n) of tau functions of the standard
KP hierarchy, associated with a flag of nested subspaces

V : · · · ⊂ Vn+1 ⊂ Vn ⊂ Vn−1 ⊂ · · · (2.11)

with

Vn = span of {w(n; 0, z), w(n + 1; 0, z), w(n + 2; 0, z), . . .}. (2.12)

The plane V0 belongs to the adelic Grassmannian of Wilson [16], that is

V0 =
K∏
j=1

(z − λj )
−1VC with VC = {g ∈ C[z] : 〈cj , g〉 = 0, 1 � j � K} (2.13)

where C[z] denotes the space of polynomials in z. The corresponding flags (2.11) form the
so-called adelic flag manifold, introduced in our previous work [7].

For a plane V0 in the adelic Grassmannian as in (2.13), we denote by AV0 the ring of
polynomials that leave V0 invariant, i.e.

AV0 = {p(z) ∈ C[z] : p(z)V0 ⊂ V0}. (2.14)

If V is the associated flag (2.11), we introduce the ring AV of rational functions that preserve
the flag V:

AV = {
f (z) ∈ C(z) with poles only at z = −1 and z = ∞:

∃k ∈ Z for which f (z)Vn ⊂ Vn+k,∀n
}
. (2.15)

It is shown in [7] that, for each f ∈ AV , there is a finite band operatorLf with i diagonals above
the main diagonal and j diagonals below it, with i and j denoting, respectively, the order of the
poles of f at z = ∞ and −1, such that Lfw(n; t, z) = f (z)w(n; t, z). The curve Spec(AV)
is a unicursal curve that completes by adding two non-singular points at infinity. Precisely, the
coordinate z defines a bijective birational map from Spec(AV) to C \ {−1}. The adelic flag
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manifold parametrizes the maximal rank-one commutative rings of difference operators whose
spectrum is a unicursal curve. In the following, we make a slight abuse of the notation by also
using AV and AV to denote the corresponding rings of differential and difference operators.

We shall denote by w̃(n, z) the reduced wavefunction

w̃(n, z) = w(n; t, z) exp

(
−

∞∑
i=1

tiz
i

)
. (2.16)

Theorem 2.2 (see theorem 5.2 in [7]). Let τ(n; t) be an adelic tau function of the �KP
hierarchy. Then, the function w′(y, z) defined by

w′(y, z) = w̃(z, ey − 1) (2.17)

with w̃(n, z) defined as in (2.6) and (2.16), is the wavefunction of a maximal rank-one
commutative ring of differential operators AV ′ in the variable y, with Spec(AV ′) a rational
curve. Consequently, the common eigenfunction w̃(n, z) of the maximal rank-one commutative
ring of difference operators Lf , satisfying

Lf w̃(n, z) = f (z)w̃(n, z) ∀f ∈ AV

is also the common eigenfunction of a maximal rank-one commutative ring of differential
operators Bθ (in the variable y or z = ey − 1), that is

Bθ

(
z,

d

dz

)
w̃(n, z) = θ(n)w̃(n, z) ∀θ ∈ AV ′ . (2.18)

Remark 2.3. As mentioned in the introduction, theorem 2.2 establishes the ‘if’ part of our
conjecture that a maximal rank-one commutative ring of difference operators is bispectral (with
a differential ring as dual ring) if and only if the spectrum of this ring is a unicursal curve,
which completes by adding two non-singular points at infinity. As in [16], one can show that
the coefficients of the operators in a bispectral ring of difference operators, must be rational
functions of the discrete variable n. Proving the ‘only if’ part of the conjecture amounts then to
proving that, in the case of a rank-one commutative ring of difference operators, the coefficients
of the operators in the ring can be rational functions of n only if the spectrum of the ring is a
unicursal curve.

Proposition 2.4. Let V be an adelic flag. The corresponding maximal rank-one commutative
ring of difference operators contains a tridiagonal matrix (with one diagonal above and one
diagonal below the main diagonal) only if Spec(AV) has an equation as in (1.1).

Proof. By assumption, there exists a function u ∈ AV with a simple pole at z = ∞ and
−1. Let w ∈ AV be another function corresponding to a non-trivial operator commuting
with the tridiagonal matrix Lu. Using u (and its powers), we can always kill the pole of w
at z = −1 and assume that w only has a pole of order N � 1 at z = ∞. We can also
suppose that N is minimal. The functions w0 = w, w1 = (w0 − w0(−1))u ≡ wu + c1u,
w2 = (w1 − w1(−1))u ≡ wu2 + c1u

2 + c2u, . . . , have a pole only at ∞ of order
N,N + 1, N + 2, . . . , respectively. By taking an appropriate linear combination, the function
w2 +

∑N
i=0 αiwi will have a pole of order N − 1 at ∞. By the minimality assumption, it

must therefore be identically constant, i.e. w2 +
∑N

i=0 αiwi = c ⇔ v2 = P2N(u), with
v = 2w +

∑N
i=0 αiu

i , and P2N(u) some polynomial in u of degree 2N . A curve of the form
v2 = P2N(u) can be rationally parametrized only if the polynomial P2N(u) has one or two
roots of odd multiplicities. If, furthermore, this curve is unicursal, it cannot have roots of even
multiplicities. This shows that Spec(AV) has an equation of the form (1.1), which concludes
the proof. �
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3. A factorization problem

Let

L0 = � − 2I + �−1. (3.1)

The lattice version of the elementary Darboux transformation [13] (see also [3, 4]), amounts
to performing a lower–upper factorization of the doubly infinite matrix L0 and to producing a
new matrix by exchanging the order of the factors. The factorization involves a free parameter
that is present in the new operator. In this section, we compute explicitly the result of the chain
of elementary Darboux transformations

L0 = P0Q0 �→ L1 = Q0P0 = P1Q1 �→ · · · �→ LR = QR−1PR−1

LR + 4I = PRQR �→ LR,1 + 4I = QRPR

= PR+1QR+1 �→ · · · �→ LR,S + 4I = QR+S−1PR+S−1.

(3.2)

It is equivalent to performing a lower–upper factorization of the operator

LR
0 (L0 + 4I )S = (�−(R+S)P )Q (3.3)

where P and Q denote monic positive difference operators of order R + S, with the kernel of
Q specified by R + S functions φ1, φ2, . . . , φR and ψ1, ψ2, . . . , ψS satisfying

L0φj = φj−1 1 � j � R (3.4)

(L0 + 4I )ψj = ψj−1 1 � j � S (3.5)

with the convention that φ0 = 0 and ψ0 = 0. Indeed, from (3.4) and (3.5), we have that
KerQ ⊂ KerQL0, implying that QL0 can be factorized to the right by Q, i.e.

QL0 = LR,SQ (3.6)

where LR,S must necessarily be a tridiagonal operator. It is easy to check that this operator
coincides with the one resulting from the sequence of elementary Darboux transformations
(3.2) (see section 3.3 of [18], where a similar argument is used).

In order to solve the factorization problem (3.3), we shall need the functions

Sεj (n; t) = 1

j !
〈e(j, ε − 1),Exp(n; t, z)〉 (3.7)

with Exp(n; t, z) and e(j, λ) defined as in (2.4) and (2.8), respectively. When ε = 1, the
functions S1

j (n; t) are a shifted version of the classical elementary Schur polynomials, defined
by exp

( ∑∞
i=1 tiz

i
) = ∑∞

j=0 Sj (t)z
j :

S1
j (n; t) = Sj (t1 + n, t2 − n/2, t3 + n/3, . . .).

A q-version of these polynomials was first considered by us in [6], with the discrete derivative
replaced by a q-derivative. It will be convenient to use the notation

Lε
0 = � − 2εI + ε2�−1. (3.8)

Lemma 3.1. Let us define

φε
j (n; t) = Sε2j−1(n + j − 1; t). (3.9)

Then

Lε
0φ

ε
j = φε

j−1. (3.10)
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Proof. From the definition (3.7), we have

Sεj (n + 1; t) − εSεj (n; t) = 1

j !
〈e(j, ε − 1), (z + 1 − ε)Exp(n; t, z)〉

= 1

(j − 1)!
〈e(j − 1, ε − 1),Exp(n; t, z)〉

= Sεj−1(n; t). (3.11)

By repeated use of this identity, we find

Lε
0φ

ε
j (n; t) = Sε2j−1(n + j ; t) − εSε2j−1(n + j − 1; t)

−ε(Sε2j−1(n + j − 1; t) − εSε2j−1(n + j − 2; t))
= Sε2j−2(n + j − 1; t) − εSε2j−2(n + j − 2; t)
= Sε2j−3(n + j − 2; t)
= φε

j−1(n; t)
which establishes the lemma. �

We denote by

φj (n; t) = φ1
j (n; t) and ψj(n; t) = φ−1

j (n; t) (3.12)

the functionsφε
j (n; t)with ε = 1 and −1, as defined in (3.9). From (3.4), (3.5) and the previous

lemma, it follows that the operator Q in (3.3) is given explicitly by

Q(n; t)f (n) = Wr�(φ1(n; t), . . . , φR(n; t), ψ1(n; t), . . . , ψS(n; t), f (n))
Wr�(φ1(n; t), . . . , φR(n; t), ψ1(n; t), . . . , ψS(n; t)) (3.13)

where Wr� denotes the discrete Wronskian defined in (2.9). We define

τ(n; t) = Wr�(φ1(n; t), . . . , φR(n; t), ψ1(n; t), . . . , ψS(n; t))

×(−1)nS exp

(
−S

∞∑
i=1

ti(−2)i
)
. (3.14)

Rewriting (3.11) as

Sεj (n + 1; t) = εSεj (n; t) + Sεj−1(n; t)
and remembering the definition (3.9), we deduce easily that

φε
j (n; t) =

j−1∑
i=0

(
j − 1

i

)
εj−1−iSε2j−1−i (n; t) ≡ 〈cεj ,Exp(n; t, z)〉 (3.15)

with the linear functionals cεj (acting on functions of z) defined by

〈cεj , g(z)〉 =
j−1∑
i=0

(
j − 1

i

)
εj−i−1

(2j − i − 1)!
e(2j − i − 1, ε − 1). (3.16)

Combining (3.12), (3.15) and (3.16), we have shown that τ(n; t) in (3.14) is an adelic
tau function (in the sense of definition 2.1) of the �KP hierarchy defined by R + S one-point
conditions, with R conditions at the point zero and S conditions at the point −2. Namely, VC
in (2.13) is given by

VC = {
g ∈ C[z] : 〈c1

j , g(z)〉 = 0, 1 � j � R and 〈c−1
j , g(z)〉 = 0, 1 � j � S

}
. (3.17)

In order to obtain an explicit formula for the factor P in (3.3), we shall need the following
technical lemma.
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Lemma 3.2. Let ε = ±1. Then

φε
j (n; t) − 1

z
�∗φε

j (n; t) =
(
z + 1 − ε

z

)2

φε
j (n; t + [z−1]) − z + 1

z2
φε
j−1(n; t + [z−1]). (3.18)

Proof. From (3.8) and (3.10), we have that

φε
j (n + 1; t) + ε2φε

j (n − 1; t) = 2εφε
j (n; t) + φε

j−1(n; t). (3.19)

Using (3.15), we also have that

φε
j (n; t − [z−1]) = z + 1

z
φε
j (n; t) − 1

z
φε
j (n + 1; t). (3.20)

When ε = ±1, combining (3.20) and (3.19) (in that order), we deduce that

φε
j (n; t − [z−1]) − 1

z
�∗φε

j (n; t − [z−1]) = z + 1

z
φε
j (n; t − [z−1]) − 1

z
φε
j (n − 1; t − [z−1])

= z + 1

z

(
z + 1

z
φε
j (n; t) − 1

z
φε
j (n + 1; t)

)
− 1

z

(
z + 1

z
φε
j (n − 1; t) − 1

z
φε
j (n; t)

)

= (z + 1)2 + 1

z2
φε
j (n; t) − z + 1

z2

(
φε
j (n + 1; t) + φε

j (n − 1; t)
)

= (z + 1)2 + 1

z2
φε
j (n; t) − z + 1

z2

(
2εφε

j (n; t) + φε
j−1(n; t)

)

=
(
z + 1 − ε

z

)2

φε
j (n; t) − z + 1

z2
φε
j−1(n; t).

Substituting t + [z−1] for t in this last formula gives (3.18), concluding the proof. �
In the next theorem, we give an explicit formula for the operator P appearing in (3.3),

which together with (3.13) provides the explicit solution of the factorization problem that we
posed at the beginning of the section. Besides, we show that Q and P are intimately related,
respectively, with the wave operator and the adjoint wave operator of the �KP hierarchy
defined by the one-point conditions in (3.17).

Theorem 3.3. The wave operator and the adjoint wave operator of the �KP hierarchy
corresponding to the R + S one-point conditions in (3.17), are expressed in terms of the
operators Q and P solving the factorization problem in (3.3), via the following formulae:

W = Q(� − I )−R(� + I )−S (3.21)

(W−1)∗ = P ∗(�∗ − I )−R(�∗ + I )−S. (3.22)

Moreover, we have an explicit Wronskian formula for the adjoint operator P ∗ in terms of the
functions φj (n; t) and ψj(n; t) defining the operator Q in (3.13), namely

P ∗(n; t)f (n) = Wr�∗(φ∗
1 (n; t), . . . , φ∗

R(n; t), ψ∗
1 (n; t), . . . , ψ∗

S (n; t), f (n))
Wr�∗(φ∗

1 (n; t), . . . , φ∗
R(n; t), ψ∗

1 (n; t), . . . , ψ∗
S (n; t))

(3.23)

with

φ∗
j (n; t) = φj (n + R + S; t) 1 � j � R

ψ∗
j (n; t) = ψj(n + R + S; t) 1 � j � S

(3.24)

and Wr�∗ defined as in (2.9) with � replaced by �∗.
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Proof. From (3.21) we have that

W(n; t)Exp(n; t, z) = z−R(z + 2)−SQExp(n; t, z). (3.25)

Using the definition of Q in (3.13), formula (3.14) for τ(n; t) and the identity (3.20), by some
elementary row manipulations on the discrete Wronskian determinant which appears in the
numerator, we find that (3.25) agrees with (2.6).

Substituting (3.21) into (3.3), we find that

LR
0 (L0 + 4I )S = �−(R+S)PW(� − I )R(� + I )S.

Since

LR
0 (L0 + 4I )S = �−(R+S)(� − I )2R(� + I )2S

we deduce that

P = (� − I )R(� + I )SW−1.

Taking the adjoint of this equation, gives (3.22).
It remains to establish (3.23) and (3.24). It is enough to show that w∗(n; t, z) defined via

(2.3), (3.22)–(3.24), satisfies (2.7), that is, we have to prove that

P ∗(n − 1; t)Exp−1(n; t, z) = zR(z + 2)S
τ (n; t + [z−1])

τ (n; t) Exp−1(n; t, z) (3.26)

with τ(n; t) as in (3.14). One checks easily that

τ(n; t) = (−1)nS+(R+S)(R+S−1)/2 exp

(
−S

∞∑
i=1

ti(−2)i
)

× Wr�∗(φ∗
1 (n − 1; t), . . . , φ∗

R(n − 1; t), ψ∗
1 (n − 1; t), . . . , ψ∗

S (n − 1; t)).
(3.27)

We replace row i by row i − (1/z)× row (i + 1), for 1 � i � R + S, in the discrete Wronskian
determinant on the numerator of the left-hand side of (3.26), using (3.18) at each step (with
ε = ±1); then we expand the determinant along the last column, all of whose entries are zero,
except the final one which is zR+S Exp−1(n; t, z). Using (3.27), this gives

left-hand side of (3.26) = (−1)nS+(R+S)(R+S−1)/2 exp
(−S

∑∞
i=1 ti(−2)i

)
τ(n; t) zR+S

× Exp−1(n; t, z)Wr�∗

(
φ∗

1 (n − 1; t + [z−1]), φ∗
2 (n − 1; t + [z−1])

−z + 1

z2
φ∗

1 (n − 1; t + [z−1]), . . . , φ∗
R(n − 1; t + [z−1])

−z + 1

z2
φ∗
R−1(n − 1; t + [z−1]),

(
z + 2

z

)2

ψ∗
1 (n − 1; t + [z−1]),

(
z + 2

z

)2

ψ∗
2 (n − 1; t + [z−1]) − z + 1

z2
ψ∗

1 (n − 1; t + [z−1]), . . . ,

(
z + 2

z

)2

ψ∗
S (n − 1; t + [z−1]) − z + 1

z2
ψ∗
S−1(n − 1; t + [z−1])

)
.



2454 L Haine and P Iliev

If we now replace in the right-hand side of the above equation column j by column
j + (z+ 1)/z2× column (j −1), for 2 � j � R, and column j by column j + (z+ 1)/(z+ 2)2×
column (j − 1), for R + 2 � j � R + S, we obtain that

the left-hand side of (3.26) = (−1)nS+(R+S)(R+S−1)/2 exp
(−S

∑∞
i=1 ti(−2)i

)
τ(n; t) zR+S

(
z + 2

z

)2S

× Exp−1(n; t, z)Wr�∗
(
φ∗

1 (n − 1; t + [z−1]), . . . , φ∗
R(n − 1, t + [z−1]),

ψ∗
1 (n − 1; t + [z−1]), . . . , ψ∗

S (n − 1; t + [z−1])
)
.

Combining this last equation with (3.27) gives (3.26), establishing the theorem. �

4. The spectral curve

It follows from theorem 3.3 that the eigenfunction of LR,S in (3.2)

pn(x) = W(n; t)xn = (x − 1)−R(x + 1)−SQ(n; t)xn (4.1)

with eigenvalue (x − 1)2/x (x = z + 1), can be interpreted as a reduced wavefunction, as
defined in (2.16), of the �KP hierarchy, built from an adelic tau function in the sense of
definition 2.1, corresponding to the R + S one-point conditions (3.17). Thus, by theorem 2.2,
the tridiagonal matrix LR,S belongs to a maximal rank-one bispectral commutative ring of
difference operators.

In this section, we construct explicitly the maximal (rank-one) ring of operators which
commute with LR,S , and we show that its spectrum is given by (1.1).

Lemma 4.1. Let V be the flag defined by the adelic tau function τ(n; t) in (3.14) corresponding
to the R + S one-point conditions in (3.17). Then, the functions

ϕj (z) = (z + 1)−j z2R(z + 2)2S j ∈ Z (4.2)

belong to the ring AV defined in (2.15).

Proof. Let us consider the operator

L = WL0W
−1 with L0 = (� − I )2R(� + I )2S�−j j ∈ Z (4.3)

and W the wave operator in (3.21). Using (3.21) and (3.22), since constant coefficient pseudo-
difference operators commute between themselves, we obtain that L = Q�−jP . Since P

and Q are positive difference operators, this shows that L in (4.3) is a finite band difference
operator. Clearly,

Lw(n; t, z) = (z + 1)−j z2R(z + 2)2Sw(n; t, z)
with w(n; t, z) as in (2.2). Remembering the definition of the flag V in (2.11) and (2.12),
this shows that the functions ϕj (z) in (4.2) belong to the ring AV as defined in (2.15). This
establishes the lemma. �

Theorem 4.2. The tridiagonal operator LR,S constructed in section 3 belongs to a maximal
rank-one commutative ring of difference operators AV with the spectral curve

Spec(AV): v2 = u2R+1(u + 1)2S+1. (4.4)
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Proof. From (3.6) and (3.21), we deduce that LR,S = WL0W
−1, with L0 as in (3.1), which

shows that the function f = z2/(z + 1) belongs to AV . This function has a simple pole at
z = −1 and ∞. Thus, we can assume that all other generators of AV can be taken to be
polynomials, that is they must belong to the ring AV0 (2.14), with V0 = z−R(z + 2)−SVC the
plane in (2.13) defined by theR+S one-point conditions (3.17). From lemma 4.1, the functions
ϕj (z) = (z+ 1)−j z2R(z+ 2)2S ∈ AV for all j ∈ Z. Using the function f above one can kill the
pole of these functions at z = −1, and in this way produce polynomials qk ∈ AV0 of degree
k, for all k � R + S + 1. Since the conditions (3.16) always contain derivatives, it is obvious
that 1 ∈ VC and therefore AV0 ⊂ VC . By definition of the adelic Grassmannian [16], the
codimension of VC in C[z] is equal to R + S. Hence, VC = {1, qR+S+1(z), qR+S+2(z), . . .} and
the algebra AV0 is generated by finitely many of the polynomials qk, k � R + S + 1. We now
show that the functions

u = z2

4(z + 1)
and v = z2R+1(z + 2)2S+1

4R+S+1(z + 1)R+S+1

are enough to generate the algebra AV , which will establish (4.4). Let

ϕ̃j = z2R+1(z + 2)2S

(z + 1)j
.

We have that

ϕR+S = 4R+SuR(u + 1)S and ϕ̃R+S = 22R+2S+1
(
uR+1(u + 1)S + v

)
and thus ϕR+S, ϕ̃R+S ∈ C[u, v]. Using the relations

ϕj−1 = ϕj + ϕ̃j and ϕ̃j−1 = 4ϕj−1u + ϕ̃j

one shows inductively that ϕj , ϕ̃j ∈ C[u, v] for j ∈ Z, which concludes the proof. �

5. Orthogonality relations

In this section, we derive an orthogonality relation on the circle for the functions pn(x), as
defined in (4.1). The differentialw(n; t, z)w∗(m; t, z) dz (that appears in the bilinear identities
(2.5)) always extends to a regular differential on the affine curve Spec(AV), see [7]. The next
lemma expresses the fact that the residue of a regular differential at a cusp is always zero (see
[15, chapter 4]).

Lemma 5.1. Let w(n; t, z) and w∗(n; t, z) denote, respectively, the wave and the adjoint
wavefunctions built from an adelic tau function, via (2.6) and (2.7). Then, for any point λj
belonging to the support of the corresponding one-point conditions, we have

resz=λj w(n; t, z)w∗(m; t, z) dz = 0 ∀n,m ∈ Z. (5.1)

Theorem 5.2. The functions pn(x) defined in (4.1), satisfy the orthogonality relations

1

2π i

∮
pn(x)pm(x

−1)
dx

x
= τ(n + 1; t)

τ (n; t) δnm ∀n,m ∈ Z (5.2)

where the integral can be taken along any simple closed curve surrounding the origin x = 0
and avoiding the points x = ±1, and τ(n; t) is the tau function defined in (3.14).
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Proof. We define the reduced adjoint wavefunction by

p∗
n(x) = w∗(n; t, x − 1) exp

( ∞∑
i=1

ti(x − 1)i
)
. (5.3)

We first establish the following relation:

pn(x
−1) = τ(n + 1; t)

τ (n; t) xp∗
n+1(x) (5.4)

which converts (5.2) to

1

2π i

∮
pn(x)p

∗
m+1(x) dx = δnm ∀n,m ∈ Z. (5.5)

We denote by (aij ; bij ; xci ), 1 � i � R + S + 1, the (R + S + 1) × (R + S + 1) matrix with
entries aij for the first R columns, entries bij for the next S columns, and entries xci in the
(R +S + 1)th column. With a similar meaning for the (R +S)× (R +S) matrix (aij ; bij ), from
(2.2), (2.3), (3.13), (3.21)–(3.23) we compute that

pn(x) = xn

(x − 1)R(x + 1)S
det

(
φj (n + i − 1; t);ψj(n + i − 1; t); xi−1

)
det(φj (n + i − 1; t);ψj(n + i − 1; t)) (5.6)

p∗
n(x) = (−1)Sx−n

(1 − x)R(x + 1)S
det

(
φj (n + i − 2; t);ψj(n + i − 2; t); xR+S+1−i

)
det(φj (n + i − 1; t);ψj(n + i − 1; t)) (5.7)

from which, remembering the definition of τ(n; t) in (3.14), equation (5.4) follows
immediately.

From (5.6) and (5.7), pn(x) and p∗
n(x) are rational functions of x on the Riemann sphere

with poles only at x = 0, ±1 and ∞. Since the support of the one-point conditions defining
the tau function in (3.14) reduces to the points z = 0 and −2, i.e. x = ±1 (since x = z + 1),
from (5.1), we immediately obtain that resx=±1 pn(x)p

∗
m(x) dx = 0, ∀n,m ∈ Z. Thus, in

order to establish (5.5), it remains to show that

resx=0 pn(x)p
∗
m+1(x) dx = δnm ∀n,m ∈ Z. (5.8)

From (5.6) and (5.7), remembering the definition of τ(n; t) in (3.14), we obtain by a
straightforward computation that, around x = 0, we have the expansion

pn(x)p
∗
m+1(x) = xn−m−1

τ(n; t)τ (m + 1; t)
(
τ(n + 1; t)τ (m; t) + O(x)

)

which establishes (5.8) for m � n. The �KP bilinear identities (2.5) with t ′ = t , tell us that
resx=∞ pm(x)p

∗
n(x) dx = 0, ∀m � n. Making the change of variable y = 1/x, from (5.4),

we obtain that

pn(x)p
∗
m+1(x) dx = −τ(n + 1; t)τ (m; t)

τ (n; t)τ (m + 1; t)pm(y)p
∗
n+1(y) dy

thus implying (5.8) for m � n + 1. This completes the proof of theorem 5.2. �

Acknowledgment

We thank a referee for his suggestions to improve an earlier version of this paper.



A rational analogue of the Krall polynomials 2457

References
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